Complex Stiefel Manifolds, some homotopy groups and vector fields
نویسندگان
چکیده
منابع مشابه
Toda brackets and the odd primary homotopy of complex Stiefel manifolds
These notes are based on the author’s Ph. D. dissertation [30] and were originally prepared for publication in the early 1970’s. They represent an ‘elementary’ approach to the problem of computing the complex James numbers. The notes are reprinted here in their original form, except for minor typographical corrections and changes of wording. In 1975 I submitted this work for publication to the ...
متن کاملSome Global Optimization Problems on Stiefel Manifolds
Optimization on Stiefel manifolds was discussed by Rapcsák in earlier papers, and some global optimization methods were considered and tested on Stiefel manifolds. In the paper, test functions are given with known global optimum points and their optimal function values. A restriction, which leads to a discretization of the problem is suggested, which results in a problem equivalent to the well-...
متن کاملReal Computable Manifolds and Homotopy Groups
Using the model of real computability developed by Blum, Cucker, Shub, and Smale, we investigate the difficulty of determining the answers to several basic topological questions about manifolds. We state definitions of real-computable manifold and of real-computable paths in such manifolds, and show that, while BSS machines cannot in general decide such questions as nullhomotopy and simple conn...
متن کاملHarmonicity and Minimality of Vector Fields on Lorentzian Lie Groups
We consider four-dimensional lie groups equipped with left-invariant Lorentzian Einstein metrics, and determine the harmonicity properties of vector fields on these spaces. In some cases, all these vector fields are critical points for the energy functional restricted to vector fields. We also classify vector fields defining harmonic maps, and calculate explicitly the energy of t...
متن کاملVector Fields on Manifolds
where n = dim M and 6» = ith Betti number of M ( = dim of Hi(M; Q)). Thus the geometric property of M having a nonzero vector field is expressed in terms of the algebraic invariant xM. We will discuss extensions of this idea to vector ^-fields, fields of ^-planes, and foliations of manifolds. All manifolds considered will be connected, smooth and without boundary; all maps will be continuous. F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1967
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1967-11802-0